Manual Backpropagation-0
INITIAL TEMPLATE
Will be useful for the remaining lectures or calculations within this section
In [ ]:
Copied!
class Value:
    def __init__(self, data, _children=(), _op='', label=''):
        self.data = data
        self.grad = 0.0
        self._prev = set(_children)
        self._op = _op
        self.label = label
    def __repr__(self):   # This basically allows us to print nicer looking expressions for the final output
        return f"Value(data={self.data})"
    def __add__(self, other):
        out = Value(self.data + other.data, (self, other), '+')
        return out
    def __mul__(self, other):
        out = Value(self.data * other.data, (self, other), '*')
        return out
class Value:
    def __init__(self, data, _children=(), _op='', label=''):
        self.data = data
        self.grad = 0.0
        self._prev = set(_children)
        self._op = _op
        self.label = label
    def __repr__(self):   # This basically allows us to print nicer looking expressions for the final output
        return f"Value(data={self.data})"
    def __add__(self, other):
        out = Value(self.data + other.data, (self, other), '+')
        return out
    def __mul__(self, other):
        out = Value(self.data * other.data, (self, other), '*')
        return out
In [ ]:
Copied!
a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a*b; e.label='e'
d= e + c; d.label='d'
f = Value(-2.0, label='f')
L = d*f; L.label='L'
L
a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a*b; e.label='e'
d= e + c; d.label='d'
f = Value(-2.0, label='f')
L = d*f; L.label='L'
L
Out[ ]:
Value(data=-8.0)
In [ ]:
Copied!
from graphviz import Digraph
def trace(root):
    #Builds a set of all nodes and edges in a graph
    nodes, edges = set(), set()
    def build(v):
        if v not in nodes:
            nodes.add(v)
            for child in v._prev:
                edges.add((child, v))
                build(child)
    build(root)
    return nodes, edges
def draw_dot(root):
    dot = Digraph(format='svg', graph_attr={'rankdir': 'LR'}) #LR == Left to Right
    nodes, edges = trace(root)
    for n in nodes:
        uid = str(id(n))
        #For any value in the graph, create a rectangular ('record') node for it
        dot.node(name = uid, label = "{ %s | data %.4f | grad %.4f }" % ( n.label, n.data, n.grad), shape='record')
        if n._op:
            #If this value is a result of some operation, then create an op node for it
            dot.node(name = uid + n._op, label=n._op)
            #and connect this node to it
            dot.edge(uid + n._op, uid)
    for n1, n2 in edges:
        #Connect n1 to the node of n2
        dot.edge(str(id(n1)), str(id(n2)) + n2._op)
    return dot
from graphviz import Digraph
def trace(root):
    #Builds a set of all nodes and edges in a graph
    nodes, edges = set(), set()
    def build(v):
        if v not in nodes:
            nodes.add(v)
            for child in v._prev:
                edges.add((child, v))
                build(child)
    build(root)
    return nodes, edges
def draw_dot(root):
    dot = Digraph(format='svg', graph_attr={'rankdir': 'LR'}) #LR == Left to Right
    nodes, edges = trace(root)
    for n in nodes:
        uid = str(id(n))
        #For any value in the graph, create a rectangular ('record') node for it
        dot.node(name = uid, label = "{ %s | data %.4f | grad %.4f }" % ( n.label, n.data, n.grad), shape='record')
        if n._op:
            #If this value is a result of some operation, then create an op node for it
            dot.node(name = uid + n._op, label=n._op)
            #and connect this node to it
            dot.edge(uid + n._op, uid)
    for n1, n2 in edges:
        #Connect n1 to the node of n2
        dot.edge(str(id(n1)), str(id(n2)) + n2._op)
    return dot
In [ ]:
Copied!
draw_dot(L)
draw_dot(L)
Out[ ]: